Mean convergence of Lagrange interpolation
نویسندگان
چکیده
In this note we prove mean convergence of Lagrange interpolation at the zeros para-orthogonal polynomials for measures on unit circle which do not belong to Szegő’s class. When measure is in class, proved functions disk algebra.
منابع مشابه
On Mean Convergence of Lagrange Interpolation for General Arrays
For n 1, let fxjngnj=1 be n distinct points in a compact set K R and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let v be a suitably restricted function on K. What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ]) v kLp(K)= 0 for every continuous f :: K ! R ? We show that it is necessary and su cient that there exists r ...
متن کاملOn Weighted Mean Convergence of Lagrange Interpolation for General Arrays
For n 1, let fxjngnj=1 be n distinct points and let Ln[ ] denote the corresponding Lagrange Interpolation operator. Let W : R ! [0;1). What conditions on the array fxjng1 j n; n 1 ensure the existence of p > 0 such that lim n!1 k (f Ln[f ])W b kLp(R)= 0 for every continuous f : R ! Rwith suitably restricted growth, and some weighting factor ? We obtain a necessary and su¢ cient condition for ...
متن کاملConvergence of Extended Lagrange Interpolation
The authors give a procedure to construct extended interpolation formulae and prove some uniform convergence theorems.
متن کاملOn quadrature convergence of extended Lagrange interpolation
Quadrature convergence of the extended Lagrange interpolant L2n+1f for any continuous function f is studied, where the interpolation nodes are the n zeros τi of an orthogonal polynomial of degree n and the n+ 1 zeros τ̂j of the corresponding “induced” orthogonal polynomial of degree n + 1. It is found that, unlike convergence in the mean, quadrature convergence does hold for all four Chebyshev w...
متن کاملMean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules
The connection between convergence of product integration rules and mean convergence of Lagrange interpolation in L, (1 <p < 00) has been thoroughly analysed by Sloan and Smith [37]. Motivated by this connection, we investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials associated with Freud weights on R. Our results apply to the weights exp(-x”/2), m = 2,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2023
ISSN: ['0021-9045', '1096-0430']
DOI: https://doi.org/10.1016/j.jat.2023.105912